How do you write x^4/(x-1)^3x4(x1)3 as a partial fraction decomposition?

1 Answer
Oct 27, 2016

The result is
x^4/(x-1)^3=x+3+6/(x-1)+4/(x-1)^2+1/(x-1)^3x4(x1)3=x+3+6x1+4(x1)2+1(x1)3

Explanation:

Since the degree of the numerator is greater than the degree of the denominator, we perform a long division

(x-1)^3=x^3-3x^2+3x-1(x1)3=x33x2+3x1

x^4x4color(white)(aaaaaaaaaaaaaaaaaaa)aaaaaaaaaaaaaaaaaaax^3-3x^2+3x-1x33x2+3x1

x^4-3x^3+3x^2-x x43x3+3x2x color(white)(aaaaa)aaaaax+3x+3

0+3x^3-3x^2+x0+3x33x2+x

color(white)(aaa)aaa3x^3-9x^2+9x-33x39x2+9x3

color(white)(aaaaa)aaaaa0+6x^2-8x+30+6x28x+3

So we get

x^4/(x-1)^3=x+3+(6x^2-8x+3)/(x-1)^3x4(x1)3=x+3+6x28x+3(x1)3

now we form the partial fraction decomposition

(6x^2-8x+3)/(x-1)^3=A/(x-1)+B/(x-1)^2+C/(x-1)^36x28x+3(x1)3=Ax1+B(x1)2+C(x1)3

(6x^2-8x+3)/(x-1)^3=(A(x-1)^2+B(x-1)+C)/(x-1)^36x28x+3(x1)3=A(x1)2+B(x1)+C(x1)3

So 6x^2-8x+3=A(x-1)^2+B(x-1)+C6x28x+3=A(x1)2+B(x1)+C

Let x=1x=1 then 1=C1=C

Compare the coefficients of x^2x2

6=A6=A

Let x=0x=0, then 3=A-B+C3=AB+C

B=6+1-3=4B=6+13=4

So the final result is

x^4/(x-1)^3=x+3+6/(x-1)+4/(x-1)^2+1/(x-1)^3x4(x1)3=x+3+6x1+4(x1)2+1(x1)3