How do you write x^2+42=12x-3y into vertex form?

1 Answer
Jun 22, 2018

y=-1/3(x-6)^2-2

Explanation:

Convert it to the form y=a(x-b)^2+c.

x^2+42=12x-3y

Move all terms containing y to the LHS.

-3y=x^2-12x+42

Divide both sides by -3.

y=-1/3(x^2-12x+42)

Because (x+p)^2=x^2+2px+p^2, the following rule can be used:
(x+1/2p)^2-p^2=x^2+px

This gives us:

y=-1/3((x-6)^2-36+42)

Simplify to y=a(x-b)^2+c.

y=-1/3((x-6)^2+6)

y=-1/3(x-6)^2-2