How do you write y = -16x^2+40x+4y=16x2+40x+4 into vertex form?

1 Answer
May 7, 2015

Vertex form for a parabola is
y=m(x-a)^2+by=m(xa)2+b
with the vertex at (a,b)(a,b)

Re-arranging y=16x^2+40x+4y=16x2+40x+4 into vertex form:

y=-16(x^2-5/2x) +4 " extract the "m" factor"y=16(x252x)+4 extract the m factor

y=-16(x^2-5/2x+(5/4)^2) +25 +4 " complete the square"y=16(x252x+(54)2)+25+4 complete the square

y = -16(x-5/4)^2+29y=16(x54)2+29