How do you write y=3(x-1)^2+5 in standard form?

2 Answers
Jul 25, 2017

See a solution process below:

Explanation:

First, we need to expand the squared term using this rule:

(color(red)(a) - color(blue)(b))^2 = color(red)(a)^2 - 2color(red)(a)color(blue)(b) + color(blue)(b)^2

Substituting x for a and 1 for b gives:

y = 3(color(red)(x) - color(blue)(1))^2 + 5

y = 3(color(red)(x)^2 - [2 * color(red)(x) * color(blue)(1)] + color(blue)(1)^2) + 5

y = 3(x^2 - 2x + 1) + 5

Next, expand the terms in parenthesis by multiplying each term within the parenthesis by the term outside the parenthesis:

y = color(red)(3)(x^2 - 2x + 1) + 5

y = (color(red)(3) xx x^2) - (color(red)(3) xx 2x) + (color(red)(3) xx 1) + 5

y = 3x^2 - 6x + 3 + 5

Now, combine like terms:

y = 3x^2 - 6x + (3 + 5)

y = 3x^2 - 6x + 8

Jul 25, 2017

y = 3x^2 + 6x + 8

Explanation:

y = 3(x - 1)^2 + 5.
To convert the vertex form to standard form, we develop the vertex form:
y = 3(x^2 - 2x + 1) + 5 = 3x^2 - 6x + 3 + 5
y = 3x^2 - 6x + 8