How do you write Y=-6(x-2)^2-9Y=6(x2)29 in standard form?

1 Answer
Oct 6, 2017

y=-6x^2+24x-33y=6x2+24x33

Explanation:

Standard form for a quadratic is y=ax^2+bx+cy=ax2+bx+c

The best way to do this is to simplify using order of operations.

First exponents,

(x-2)^2=(x-2)(x-2)(x2)2=(x2)(x2)
Using FOIL x*x=x^2, x*-2=-2x, -2*x=-2x, and -2*-2=4xx=x2,x2=2x,2x=2x,and22=4

So (x-2)(x-2)=x^2-2x-2x+4=x^2-4x+4(x2)(x2)=x22x2x+4=x24x+4

Next multiplication,

-6(x^2-4x+4)=-6x^2+24x-246(x24x+4)=6x2+24x24

Finally subtraction,

-6x^2+24x-24-9=-6x^2+24x-336x2+24x249=6x2+24x33