How do you write #y= (x-2) ^2+ 6# in standard form?

1 Answer
Oct 2, 2017

See a solution process below:

Explanation:

We can use this rule to expand the term in parenthesis:

#(color(red)(x) - color(blue)(y))^2 = color(red)(x)^2 - 2color(red)(x)color(blue)(y) + color(blue)(y)^2#

#y = (color(red)(x) - color(blue)(2))^2 + 6#

#y = color(red)(x)^2 - (2 * color(red)(x) * color(blue)(2)) + color(blue)(2)^2 + 6#

#y = x^2 - 4x + 4 + 6#

#y = x^2 - 4x + 10#