How do you write y= (x-2)^(2)+6y=(x2)2+6 in standard form?

1 Answer
Aug 9, 2017

See a solution process below:

Explanation:

First, expand the squared term in parenthesis using this rule:

(color(red)(x) - color(blue)(y))^2 = color(red)(x)^2 - 2color(red)(x)color(blue)(y) + color(blue)(y)^2(xy)2=x22xy+y2

y = (color(red)(x) - color(blue)(2))^2 + 6y=(x2)2+6

y = color(red)(x)^2 - (2 * color(red)(x) * color(blue)(2)) + color(blue)(2)^2 + 6y=x2(2x2)+22+6

y = x^2 - 4x + 4 + 6y=x24x+4+6

Now, combine like terms:

y = x^2 - 4x + (4 + 6)y=x24x+(4+6)

y = x^2 - 4x + 10y=x24x+10