How do you write y =x^2 - 5x - 6 in vertex form?

1 Answer
Aug 7, 2017

y=(x-5/2)^2-49/4

Explanation:

"the equation of a parabola in "color(blue)"vertex form" is.

color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))
where ( h , k ) are the coordinates of the vertex and a is a constant.

"for a parabola in standard form "y=ax^2+bx+c

x_(color(red)"vertex")=-b/(2a)

y=x^2-5x-6" is in standard form"

"with "a=1,b=-5,c=-6

rArrx_(color(red)"vertex")=-(-5)/2=5/2

"substitute this into the equation for y-coordinate"

rArry_(color(red)"vertex")=(5/2)^2-5(5/2)-6=-49/4

rArrcolor(magenta)"vertex "=(5/2,-49/4)

rArry=(x-5/2)^2-49/4larrcolor(red)" in vertex form"