How many subsets does a set #{{{O/}}}# have?
1 Answer
Nov 10, 2017
Two, namely:
#O/" "# and#" "{{{O/}}}#
Explanation:
The set:
#{{{O/}}}#
has just one element, namely
So it has exactly two subsets:
#O/" "# and#" "{{{O/}}}#
Bonus
Note that for any set
Starting from
#2^(O/) = { O/ }#
#2^(2^(O/)) = { O/, { O/ }}#
#2^(2^(2^(O/))) = { O/, { O/ }, { { O/ }}, { O/, {O/}}}#
#2^(2^(2^(2^(O/)))) = { O/, {O/}, {{O/}}, {{{O/}}}, {O/,{O/}}, {O/,{{O/}}}, {{O/},{{O/}}}, {O/,{O/,{O/}}}, {{O/},{O/,{O/}}}, {{{O/}},{O/,{O/}}}, {O/,{O/},{{O/}}}, {O/,{O/},{O/,{O/}}}, {O/,{{O/}},{O/,{O/}}},{{O/},{{O/}},{O/,{O/}}},{O/,{O/},{{O/}},{O/,{O/}}}}#