Suppose that, #intt^2/sqrt(a+2t^5)dt=f(t)+c#.
#:." by the Definition of Integral, "f'(t)=t^2/sqrt(a+2t^5)......(star)#.
Further, using the Fundamental Theorem of Calculus, we have,
#int_0^xt^2/sqrt(a+2t^5)dt=f(x)-f(0).............................(starstar)#.
Now, #lim_(x to 0){int_0^xt^2/sqrt(a+2t^5)dt}/(bx-esinx)#,
#=lim_(x to 0){f(x)-f(0)}/{x(b-e*sinx/x)}............[because, (starstar)]#,
#=lim_(x to 0){(f(x)-f(0))/(x-0)}/{(b-e*sinx/x)}#,
#={lim_(x to 0)(f(x)-f(0))/(x-0)}/{lim_(x to 0)(b-e*sinx/x)}#,
#=(f'(0))/(b-e*1)#.
Here, by #(star), f'(0)=0^2/sqrt(a+2*0^5)=0#.
#:. lim_(x to 0){int_0^xt^2/sqrt(a+2t^5)dt}/(bx-esinx)=0#.
This means that, there do not exist #a, b in RR#, such that the
limit in question be #1/pi#.