How to do this problem?

enter image source here

1 Answer
Aug 14, 2017

#x = frac(pi)(3), frac(5 pi)(3)#

Explanation:

We have: #cos(x) = frac(1)(2)#; #0 le x le 2 pi#

Let the reference angle be #cos(x) = frac(1)(2)#:

Applying #arccos# to both sides of the equation:

#Rightarrow arccos(cos(x)) = arccos(frac(1)(2))#

#Rightarrow x = frac(pi)(3)#

So, the reference angle is #x = frac(pi)(3)#

Now, the interval is given as #0 le x le 2 pi#, covering all four quadrants.

The value of #cos(x)# is positive, i.e. #+ frac(1)(2)#.

So, we need to find the values of #x# in the first and fourth quadrants (where values of #cos(x)# are positive).

#Rightarrow x = frac(pi)(3), 2 pi - frac(pi)(3)#

#Rightarrow x = frac(pi)(3), frac(6 pi)(3) - frac(pi)(3)#

#therefore x = frac(pi)(3), frac(5 pi)(3)#

Therefore, the solutions to the equation are #x = frac(pi)(3)# and #x = frac(5 pi)(3)#.