How to find f '(a). f(x) = √ 2-6x ?

1 Answer
Mar 3, 2015

If f(x) = sqrt( 2 - 6x)f(x)=26x

Define h(x) = 2 - 6xh(x)=26x
and g(x) = sqrt(x) = x^(1/2)g(x)=x=x12
so
f(x) = g(h(x)f(x)=g(h(x)

Use the product rule:
(d f(x))/(dx) = (d g(h(x)))/(d h(x)) * (d h(x))/(dx)df(x)dx=dg(h(x))dh(x)dh(x)dx

= ((1/2) * (2 - 6x)^(-1/2)) * (-6)=((12)(26x)12)(6)

= (-3)/(sqrt(2-6x))=326x

So,
f'(a) = (-3)/(sqrt(2-6a))