How to find the area of the loop of the curve x(x^2+y^2)=a(x^2-y^2)?
1 Answer
Explanation:
Converting to polar using
rcostheta(r^2cos^2theta+r^2sin^2theta)=a(r^2cos^2theta-r^2sin^2theta)
r^3costheta(cos^2theta+sin^2theta)=ar^2(cos^2theta-sin^2theta)
Using
r^3costheta=ar^2(cos^2theta-(1-cos^2theta))
r^3costheta-ar^2(2cos^2theta-1)=0
r^2(rcostheta-a(2cos^2theta-1))=0
Note that
rcostheta=a(2cos^2theta-1)
r=a(2costheta-sectheta)
The loop will begin and end when
2costheta=sectheta
2cos^2theta=1
costheta=pm1/sqrt2
theta=pmpi/4
The area of a polar curve
1/2int_(-pi/4)^(pi/4)[a(2costheta-sectheta)]^2d theta
Since the loop is symmetric across the
=int_0^(pi/4)a^2(2costheta-sectheta)^2d theta
=a^2int_0^(pi/4)(4cos^2theta-4costhetasectheta+sec^2theta)d theta
Using
=a^2int_0^(pi/4)(2(1+cos2theta)-4+sec^2theta)d theta
=a^2int_0^(pi/4)(2cos2theta+sec^2theta-2)d theta
Integrating term by term:
=a^2(sin2theta+tantheta-2theta)|_0^(pi/4)
=a^2(sin(pi/2)+tan(pi/4)-pi/2)-a^2(sin0+tan0-0)
=a^2(1+1-pi/2)
=(a^2(4-pi))/2