How to find the area of the loop of the curve x(x^2+y^2)=a(x^2-y^2)?

1 Answer
May 11, 2017

(a^2(4-pi))/2

Explanation:

Converting to polar using x=rcostheta and y=rsintheta:

rcostheta(r^2cos^2theta+r^2sin^2theta)=a(r^2cos^2theta-r^2sin^2theta)

r^3costheta(cos^2theta+sin^2theta)=ar^2(cos^2theta-sin^2theta)

Using cos^2theta+sin^2theta=1:

r^3costheta=ar^2(cos^2theta-(1-cos^2theta))

r^3costheta-ar^2(2cos^2theta-1)=0

r^2(rcostheta-a(2cos^2theta-1))=0

Note that r^2=0 is just the point (0,0), so we're left with:

rcostheta=a(2cos^2theta-1)

r=a(2costheta-sectheta)

The loop will begin and end when r=0, which is when

2costheta=sectheta

2cos^2theta=1

costheta=pm1/sqrt2

theta=pmpi/4

The area of a polar curve r from theta=alpha to theta=beta is given by 1/2int_alpha^betar^2d theta, so here the integral for the area is:

1/2int_(-pi/4)^(pi/4)[a(2costheta-sectheta)]^2d theta

Since the loop is symmetric across the x axis:

=int_0^(pi/4)a^2(2costheta-sectheta)^2d theta

=a^2int_0^(pi/4)(4cos^2theta-4costhetasectheta+sec^2theta)d theta

Using cos^2theta=1/2(1+cos2theta):

=a^2int_0^(pi/4)(2(1+cos2theta)-4+sec^2theta)d theta

=a^2int_0^(pi/4)(2cos2theta+sec^2theta-2)d theta

Integrating term by term:

=a^2(sin2theta+tantheta-2theta)|_0^(pi/4)

=a^2(sin(pi/2)+tan(pi/4)-pi/2)-a^2(sin0+tan0-0)

=a^2(1+1-pi/2)

=(a^2(4-pi))/2