How to prove that f is continuous?

f,g:R->R with
g(x)=f(f(x)) + e^x ,xεR
supposed f, g are strictly increasing and for x_0εR, lim_(xrarrx_0)f(x)=l

1 Answer
Dec 5, 2017

lim_(xrarrx_0)f(x)=f(x_0)=L

Explanation:

lim_(xrarrx_0)f(x)=L <=>lim_(xrarrx_0^+)f(x)=lim_(xrarrx_0^-)f(x)=L

  • If x<x_0 => x->x_0^- =>f(x)<f(x_0) , because f strictly increasing

so => lim_(xrarrx_0^-)f(x) <=f(x_0) (1)

  • If x>x_0 => => x->x_0^+ =>f(x)>f(x_0) , because f strictly increasing

so => lim_(xrarrx_0^+)f(x) >=f(x_0) (2)

L<=f(x_0)
&
L>=f(x_0)

=> f(x_0)=L