How to prove the following? cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)3 Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer P dilip_k Mar 1, 2017 LHS=cot^-1 7+cot^-1 8+cot^-1 18 =cot^-1 ((7xx8-1)/(8+7))+cot^-1 18 =cot^-1 (55/15)+cot^-1 18 =cot^-1 (11/3)+cot^-1 18 =cot^-1 ((11/3xx18-1)/(11/3+18)) =cot^-1 ((66-1)/((11+18*3)/3)) =cot^-1 3=RHS Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 23122 views around the world You can reuse this answer Creative Commons License