How to solve #(3w-65)/(w^2+65)=w-7#?
.
.
1 Answer
Real solution:
#w = 1/3(7+root(3)(3655+3sqrt(1770042))+root(3)(3655-3sqrt(1770042)))#
and related complex solutions.
Explanation:
Given:
#(3w-65)/(w^2+65) = w-7#
Multiply both sides by
#3w-65 = (w-7)(w^2+65)#
#color(white)(3w-65) = w^3-7w^2+65w-455#
Subtract
#0 = w^3-7w^2+62w-390#
We can solve this cubic using Cardano's method.
Given:
#f(w) = w^3-7w^2+62w-390#
Discriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 188356-953312-535080-4106700+3046680 = -2360056#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=27f(w)=27w^3-189w^2+1674w-10530#
#=(3w-7)^3+411(3w-7)-7310#
#=t^3+411t-7310#
where
Cardano's method
We want to solve:
#t^3+411t-7310=0#
Let
Then:
#u^3+v^3+3(uv+137)(u+v)-7310=0#
Add the constraint
#u^3-2571353/u^3-7310=0#
Multiply through by
#(u^3)^2-7310(u^3)-2571353=0#
Use the quadratic formula to find:
#u^3=(7310+-sqrt((-7310)^2-4(1)(-2571353)))/(2*1)#
#=(7310+-sqrt(53436100+10285412))/2#
#=(7310+-sqrt(63721512))/2#
#=3655+-3sqrt(1770042)#
Since this is Real and the derivation is symmetric in
#t_1=root(3)(3655+3sqrt(1770042))+root(3)(3655-3sqrt(1770042))#
and related Complex roots:
#t_2=omega root(3)(3655+3sqrt(1770042))+omega^2 root(3)(3655-3sqrt(1770042))#
#t_3=omega^2 root(3)(3655+3sqrt(1770042))+omega root(3)(3655-3sqrt(1770042))#
where
Now
#w_1 = 1/3(7+root(3)(3655+3sqrt(1770042))+root(3)(3655-3sqrt(1770042)))#
#w_2 = 1/3(7+omega root(3)(3655+3sqrt(1770042))+omega^2 root(3)(3655-3sqrt(1770042)))#
#w_3 = 1/3(7+omega^2 root(3)(3655+3sqrt(1770042))+omega root(3)(3655-3sqrt(1770042)))#