How to solve A method for #ax^3+bx^2+cx+d=0#?
#ax^3+bx^2+cx+d=0#
#atsqrt(t)+bt+csqrt(t)+d=0#
#(at+c)sqrt(t)+bt=-d#
#(at+c)^2t+2(at+c)sqrt(t)+b^2t^2=d^2#
#at+c=p# , #b^2=q# , #-d^2=r#
#p^2t+2psqrt(t)+qt^2+r=0#
#t=m/(p^2)#
#m+q/p^4m^2=-r-2sqrt(m)#
#-r-2sqrt(m)=-sqrt(r^2+4(rsqrt(m)+m)#
#q/p^4=n#
#m+nm^2=-sqrt(r^2+4(rsqrt(m)+m)#
#m^2+n^2m^4=-2nm^3-sqrt(r^2+4s#
#s^2=m^2+(r^2+2rsqrt(m))m#
....
....
2 Answers
See explanation...
Explanation:
Given:
#ax^3+bx^2+cx+d = 0" "# with#a != 0#
We have:
#0 = 27a^2(ax^3+bx^2+cx+d)#
#color(white)(0) = 27a^3x^3+27a^2bx^2+27a^2cx+27a^2d#
#color(white)(0) = (3ax)^3+3(3ax)^2b+3(3ax)b^2+b^3+(27a^2c-9ab^2)x+(27a^2d-b^3)#
#color(white)(0) = (3ax+b)^3+(9ac-3b^2)(3ax+b)+(2b^3+27a^2d-9abc)#
#color(white)(0) = t^3+pt+q#
where:
#{ (t = 3ax+b), (p = 9ac-3b^2), (q = 2b^3+27a^2d-9abc) :}#
If the cubic has one real root and two non-real roots, then a good method from this point may be provided by Cardano's method:
Let
Then:
#u^3+v^3+(3uv+p)(u+v)+q = 0#
To eliminate the term in
#u^3-p^3/(27u^3)+q = 0#
Multiply through by
#27(u^3)^2+27q(u^3)-p^3 = 0#
We can then use the quadratic formula to find:
#u^3 = (-27q+-sqrt(729q^2+108p^3))/54#
If this is real valued, then so is
#t_1 = root(3)((-27q+sqrt(729q^2+108p^3))/54)+root(3)((-27q-sqrt(729q^2+108p^3))/54)#
#color(white)(t_1) = 1/3 (root(3)((-27q+3sqrt(81q^2+12p^3))/2)+root(3)((-27q-3sqrt(81q^2+12p^3))/2))#
and associated non-real complex roots:
#t_2 = 1/3 (omega root(3)((-27q+3sqrt(81q^2+12p^3))/2)+omega^2 root(3)((-27q-3sqrt(81q^2+12p^3))/2))#
#t_3 = 1/3 (omega^2 root(3)((-27q+3sqrt(81q^2+12p^3))/2)+omega root(3)((-27q-3sqrt(81q^2+12p^3))/2))#
where
Then we can use
If the given cubic has
#t = 1/3 root(3)((-27q+3sqrt(81q^2+12p^3))/2) - p/(root(3)((-27q+3sqrt(81q^2+12p^3))/2))#
Note that in this expression, the cube roots will be irreducible complex cube roots, with a sum that is real. This is not a nice way of representing real roots. If the cubic has
Here's a method you can use in the case of
Explanation:
Supplemental to the other answer, if the reduced cubic equation:
#t^3+pt+q = 0#
has
#t = k cos theta#
Then we have:
#k^3 cos^3 theta + k p cos theta + q = 0#
In consideration of the trigonometric identity:
#cos 3 theta = 4 cos^3 theta - 3 cos theta#
choose:
#k = 2sqrt(-p/3)#
Then:
#0 = k^3 cos^3 theta + k p cos theta + q#
#color(white)(0) = - 2/3 p sqrt(-p/3) (4 cos^3 theta - 3cos theta) + q#
#color(white)(0) = - 2/3 p sqrt(-p/3) cos 3 theta + q#
and hence:
#cos 3 theta = (3q)/(2 p sqrt(-p/3))#
So:
#3 theta = +-cos^(-1)((3q)/(2 p sqrt(-p/3)))+2npi" "# for any integer#n#
So:
#theta = +-1/3cos^(-1)((3q)/(2 p sqrt(-p/3)))+(2npi)/3#
Remembering that
#cos theta = cos(1/3cos^(-1)((3q)/(2 p sqrt(-p/3)))+(2npi)/3)" "# for#n = 0, 1, 2#
and hence three solutions of the given reduced cubic equation:
#t_n = 2sqrt(-p/3) cos(1/3cos^(-1)((3q)/(2 p sqrt(-p/3)))+(2npi)/3)" "# for#n = 0, 1, 2#