Given alpha=pi/3 and beta=(2pi)/3
We have (beta+alpha)=piand (beta-alpha)=pi/3
To evaluate
(sin^2(alpha+beta)-cos^2alpha-cos^2beta)/(sin(alpha+beta)-sin^2alpha-sin^2beta)
=(sin^2(alpha+beta)-(cos^2alpha+cos^2beta))/(sin(alpha+beta)-(sin^2alpha+sin^2beta))
=(sin^2(alpha+beta)-(1-sin^2alpha+cos^2beta))/(sin(alpha+beta)-(sin^2alpha+1-cos^2beta))
=(sin^2(alpha+beta)-(1+cos^2beta-sin^2alpha))/(sin(alpha+beta)-(1-(cos^2beta-sin^2alpha)))
=(sin^2(alpha+beta)-(1+cos(beta+alpha)cos(beta-alpha)))/(sin(alpha+beta)-(1-cos(beta+alpha)cos(beta-alpha))
=(sin^2(pi)-(1+cos(pi)cos(pi/3)))/(sin(pi)-(1-cos(pi)cos(pi/3))
=(0-(1-1/2))/(0-(1+1/2))=1/3
Formula used
cos(beta+alpha)cos(beta-alpha)
=cos^2betacos^2alpha-sin^2betasin^2alpha
=cos^2beta(1-sin^2alpha)-(1-cos^2beta)sin^2alpha
=cos^2beta-sin^2alpha
Alternative
(sin^2(alpha+beta)-cos^2alpha-cos^2beta)/(sin(alpha+beta)-sin^2alpha-sin^2beta)
=(sin^2(pi)-cos^2(pi/3)-cos^2((2pi)/3))/(sin(pi)-sin^2(pi/3)-sin^2((2pi)/3))
=(0-1/4-1/4)/(0-3/4-3/4)=(1/2)/(3/2)=1/3