How to solve sin5x = -sin3x?

2 Answers
Apr 23, 2018

#x={(2k+1)pi/2,kinZZ} U {(kpi)/4,kinZZ}#

Explanation:

We know that,

#color(red)((1)sinC+sinD=2sin((C+D)/2)cos((C-D)/2)#

#color(blue)((2)sintheta=0=>theta=kpi,kinZZ#

#color(blue)((3)costheta=0=>theta=(2k+1)pi/2,kinZZ#

Here,

#sin5x=-sin3x#

#=>sin5x+sin3x=0...tocolor(red)(Apply(1)#

#=>2sin((5x+3x)/2)cos((5x-3x)/2)=0#

#=>sin4xcosx=0#

#=>sin4x=0 or cosx=0#

#(i)sin4x=0=>4x=kpi,kinZZ...tocolor(blue)(Apply(2)#

#color(white)(..................)=>x=(kpi)/4,kinZZ#

#(ii)cosx=0=>x=(2k+1)pi/2,kinZZ...tocolor(blue)(Apply(3)#

Hence, from #(i) and(ii)#

#x={(kpi)/4,kinZZ}U{(2k+1)pi/2,kinZZ}#

Apr 23, 2018

#x in {1/4kpi:kinZZ} uu{(2k+1)/2pi:kinZZ}#

Explanation:

We have the following properties of #sin# which we will use to answer the question:

  • #-sinx=sin(-x)#
  • #sinx=sin(pi-x)#

Let #k# be an integer.

#sin5x=-sin3x=sin(-3x)=sin(pi+3x)#

#5x=-3x+2kpi# or #5x=pi+3x+2kpi#

so #8x=2kpi# or #2x=pi+2kpi#

so #x=1/4kpi# or #x=1/2pi+kpi=(2k+1)/2pi#

so #x in {1/4kpi:kinZZ} uu{(2k+1)/2pi:kinZZ}#