How to solve tan ϑ + 1 = 0 in the domain 0 ≤ ϑ ≤ 3600?

1 Answer
Apr 29, 2017

Values of theta in the interval 0 <= theta < 3600^@ are

{135^@,315^@,495^@,675^@,855^@,1035^@,1215^@,1395^@,1575^@,1755^@,1935^@,2115^@,2295^@,2475^@,2655^@,2835^@,3015^@,3195^@,3375^@,3555^@}

Explanation:

As tantheta+1=0, we have

tantheta=-1=tan((3pi)/4)=tan135^@

As tangent has a cycle of 180^@

theta=180^@xxn+135^@, where n is an integer

and values of theta in the interval 0 <= theta < 3600^@ are

{135^@,315^@,495^@,675^@,855^@,1035^@,1215^@,1395^@,1575^@,1755^@,1935^@,2115^@,2295^@,2475^@,2655^@,2835^@,3015^@,3195^@,3375^@,3555^@}