How to solve this trigonometric equation?

enter image source here

1 Answer
Apr 1, 2018

Answer is (3).

Explanation:

#5(tan^2x-cos^2x)=2cos2x+9#

#hArr5(sec^2x-1)-5cos^2x=2(2cos^2x-1)+9#

or #5sec^2x-9cos^2x-12=0# and multiplying by #cos^2x# we get

#5-9cos^4x-12cos^2x=0#

i.e. #9cos^4x+12cos^2x-5=0#

and #cos^2x=(-12+-sqrt(144+180))/18#

= #(-12+-18)/18#

i.e. #cos^2x=1/3# as we cannot have #cos^2x# as negative

Hence #cos2x=2cos^2x-1=2*1/3-1=-1/3#

and #cos4x=2cos^2 2x-1=2(-1/3)^2-1=-7/9#

Hence, answer is (3).