How to you find the general solution of dy/dx=xcosx^2dydx=xcosx2?

2 Answers

First we notice that

d(sinx^2)/dx=2xcosx^2dsinx2dx=2xcosx2

or

xcosx^2=1/2*(dsinx^2/dx)xcosx2=12(dsinx2dx)

Hence the problem becomes

dy/dx=1/2*(dsinx^2)/dxdydx=12dsinx2dx

Integrate both sides with respect to xx and we have

int dy/dx*dx =1/2*int (dsinx^2/dx)dxdydxdx=12(dsinx2dx)dx

y=1/2*sinx^2+cy=12sinx2+c

The general solution is

y(x)=1/2*sinx^2+cy(x)=12sinx2+c

Mar 5, 2017

y = 1/2sin(x^2)+ Cy=12sin(x2)+C

Explanation:

dy/dx = xcosx^2dydx=xcosx2

dy = xcosx^2dxdy=xcosx2dx

int dy = int xcosx^2 dxdy=xcosx2dx

THIS SOLUTION IS ONLY CORRECT IF THE PROBLEM IS WRITTEN CORRECTLY. The solution would be different if the problem is dy/dx = xcos^2xdydx=xcos2x.

Let u = x^2u=x2. Then du = 2xdxdu=2xdx and dx = (du)/(2x)dx=du2x.

intdy = intxcosu (du)/(2x)dy=xcosudu2x

intdy = int 1/2cosududy=12cosudu

y = 1/2sinu + Cy=12sinu+C

y = 1/2sin(x^2) + Cy=12sin(x2)+C

Hopefully this helps!