How to you find the general solution of dy/dx=xsqrt(5-x)dydx=x√5−x?
1 Answer
y = 2/5(5-x)^(5/2) - 10/3(5-x)^(3/2) + C y=25(5−x)52−103(5−x)32+C , Providedx<=5 x≤5
Explanation:
We have
int dy = int xsqrt(5-x)dx ∫dy=∫x√5−xdx
And so
For the RHS integral, Let
And,
So
So the DE solution is;
y = 2/5(5-x)^(5/2) - 10/3(5-x)^(3/2) + C