How to you find the general solution of sqrt(x^2-9)y'=5x?
1 Answer
Jan 18, 2017
Explanation:
Writing
sqrt(x^2-9)dy/dx=5x
Then:
dy/dx=(5x)/sqrt(x^2-9)
Separating the variables by treating
intdy=int(5x)/sqrt(x^2-9)dx
y=int(5x)/sqrt(x^2-9)dx
Solve the remaining integral by letting
y=5/2int(2x)/sqrt(x^2-9)dx
y=5/2int1/sqrtudu
y=5/2intu^(-1/2)du
y=5/2(u^(1/2)/(1/2))+C
y=5sqrtu+C
y=5sqrt(x^2-9)+C