How to you find the general solution of sqrt(x^2-9)y'=5x?

1 Answer
Jan 18, 2017

y=5sqrt(x^2-9)+C

Explanation:

Writing y' as dy/dx:

sqrt(x^2-9)dy/dx=5x

Then:

dy/dx=(5x)/sqrt(x^2-9)

Separating the variables by treating dy/dx as a quotient then integrating both sides:

intdy=int(5x)/sqrt(x^2-9)dx

y=int(5x)/sqrt(x^2-9)dx

Solve the remaining integral by letting u=x^2-9, implying that du=2xcolor(white).dx:

y=5/2int(2x)/sqrt(x^2-9)dx

y=5/2int1/sqrtudu

y=5/2intu^(-1/2)du

y=5/2(u^(1/2)/(1/2))+C

y=5sqrtu+C

y=5sqrt(x^2-9)+C