If A and B are 2x2 matrices with det(A)=3 and det(B)=2, what is det((3A^-1)(B^T))?
1 Answer
# det((3bb(A)^-1)(bb(B)^T)) = 6 #
Explanation:
We have:
# det(bb(A)) = 3 #
# det(bb(B)) = 2 #
We will need the following properties of determinants:
# det(bb(M^(-1))) = 1/det(bb(M)) # # det(bb(M^(T))) = det(bb(M)) # - If one row of
#bb(M)# is multiplied by#lamda# to produce a matrix#bb(N)# , then#det(bb(N))= lamda det(bb(M))# # det(bb(M)bb(N)) = det(bb(M)) \ det(bb(N)) \ \ # where#bb(M),bb(N)# same dimension.
Also not that as a corollary, if we multiply a matrix by a constant,
So:
# det((3bb(A)^-1)(bb(B)^T)) = det(3bb(A)^-1) \ det(bb(B)^T) \ \ # (property 4)
# " " = det(3bb(A)^-1) \ det(bb(B)) \ \ # (property 2)
# " " = 3^2det(bb(A)^-1) \ det(bb(B)) \ \ # (#A \ 2 xx2# )
# " " = 9 1/det(bb(A)) \ det(bb(B)) \ \ # (property 1)
# " " = 9 xx 1/3 xx 2 #
# " " = 6 #