If a,b are real and a^2+b^2=1 then show that the equation {sqrt(1+x)-isqrt(1-x)}/{sqrt(1+x)+isqrt(1-x)}=a-ib is satisfy by a real value of x?

{sqrt(1+x)-isqrt(1-x)}/{sqrt(1+x)+isqrt(1-x)}=a-ib1+xi1x1+x+i1x=aib

1 Answer
Jan 1, 2018

See below.

Explanation:

Using the facts

u + i v = sqrt(u^2+v^2) e^(i phi)u+iv=u2+v2eiϕ with phi = arctan(v/u)ϕ=arctan(vu)
e^(i phi) = cos phi + i sin phieiϕ=cosϕ+isinϕ

we have

(u-iv)/(u+iv) = e^(-2i phi) = cos 2phi - i sin 2 phiuivu+iv=e2iϕ=cos2ϕisin2ϕ

now calling

a = cos 2 phia=cos2ϕ
b = sin 2 phib=sin2ϕ
u = sqrt(1+x)u=1+x
v = sqrt(1-x)v=1x

all the conditions are satisfied.

Another approach.

Considering

u = sqrt(1+x)u=1+x
v = sqrt(1-x)v=1x

(u-iv)/(u+iv) = (u-iv)^2/((u+iv)(u-iv)) = (u^2-v^2-2i u v)/(u^2+v^2)uivu+iv=(uiv)2(u+iv)(uiv)=u2v22iuvu2+v2 or

(1+x-(1-x)-2i sqrt(1-x^2))/(1+x+1-x) = (2x-2isqrt(1-x^2))/2 = x-i sqrt(1-x^2)1+x(1x)2i1x21+x+1x=2x2i1x22=xi1x2

so finally

a = xa=x and b = sqrt(1-x^2)b=1x2

is satisfied for all abs x le 1|x|1