If a,b are real and a^2+b^2=1 then show that the equation {sqrt(1+x)-isqrt(1-x)}/{sqrt(1+x)+isqrt(1-x)}=a-ib is satisfy by a real value of x?

{sqrt(1+x)-isqrt(1-x)}/{sqrt(1+x)+isqrt(1-x)}=a-ib

1 Answer
Jan 1, 2018

See below.

Explanation:

Using the facts

u + i v = sqrt(u^2+v^2) e^(i phi) with phi = arctan(v/u)
e^(i phi) = cos phi + i sin phi

we have

(u-iv)/(u+iv) = e^(-2i phi) = cos 2phi - i sin 2 phi

now calling

a = cos 2 phi
b = sin 2 phi
u = sqrt(1+x)
v = sqrt(1-x)

all the conditions are satisfied.

Another approach.

Considering

u = sqrt(1+x)
v = sqrt(1-x)

(u-iv)/(u+iv) = (u-iv)^2/((u+iv)(u-iv)) = (u^2-v^2-2i u v)/(u^2+v^2) or

(1+x-(1-x)-2i sqrt(1-x^2))/(1+x+1-x) = (2x-2isqrt(1-x^2))/2 = x-i sqrt(1-x^2)

so finally

a = x and b = sqrt(1-x^2)

is satisfied for all abs x le 1