If A,B,C are the angles of a triangle then cosA+cosB+cosC=?

1 Answer
Nov 2, 2017

cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)cosA+cosB+cosC=1+4sin(A2)sin(B2)sin(C2)

Explanation:

AsA,BA,B andCC are angles of a triangle, we have

A+B+C=180A+B+C=180 and A+B=180-CA+B=180C or (A+B)/2=90-C/2A+B2=90C2

Hence cosA+cosB+cosCcosA+cosB+cosC

= 2cos((A+B)/2)cos((A-B)/2)+1-2sin^2(C/2)-12cos(A+B2)cos(AB2)+12sin2(C2)1

= 2cos(90-C/2)cos((A-B)/2)+1-2sin^2(C/2)2cos(90C2)cos(AB2)+12sin2(C2)

= 2sin(C/2)cos((A-B)/2)+1-2sin^2(C/2)2sin(C2)cos(AB2)+12sin2(C2)

= 2sin(C/2)(cos((A-B)/2)-sin(C/2))+12sin(C2)(cos(AB2)sin(C2))+1

= 2sin(C/2)(cos((A-B)/2)-cos((A+B)/2))+12sin(C2)(cos(AB2)cos(A+B2))+1

= 2sin(C/2)(2sin(A/2)sin(B/2))+12sin(C2)(2sin(A2)sin(B2))+1

= 1+4sin(A/2)sin(B/2)sin(C/2)1+4sin(A2)sin(B2)sin(C2)