If #(a^n + b^n)/(a^(n-1) + b^(n-1))# is the G.M between a & b find the value of'n'?

3 Answers
Aug 20, 2017

#a=b# and #n# doesn't matter.

Explanation:

The geometric mean of #x# and #y# is given by #sqrt(xy)#.

Thus,

#sqrt(ab)=(a^n+b^n)/(a^(n-1)+b^(n-1))#

Cross multiplying yields:

#(ab)^(1/2)(a^(n-1)+b^(n-1))=a^n+b^n#

#a^(n-1/2)b^(1/2)+a^(1/2)b^(n-1/2)=a^n+b^n#

#a^nsqrt(b/a)+b^nsqrt(a/b)=a^n+b^n#

Comparing coefficients, we see that #sqrt(a/b)=1# and #sqrt(b/a)=1#. Thus, #a=b# and #n# is irrelevant.

Aug 20, 2017

#n=1/2#

Explanation:

Putting #n = 1/2# we find:

#(a^n+b^n)/(a^(n-1)+b^(n-1)) = (sqrt(a)+sqrt(b))/(1/sqrt(a)+1/sqrt(b))#

#color(white)((a^n+b^n)/(a^(n-1)+b^(n-1))) = (sqrt(a)+sqrt(b))/(((sqrt(a)+sqrt(b))/(sqrt(a)sqrt(b))))#

#color(white)((a^n+b^n)/(a^(n-1)+b^(n-1))) = sqrt(a)sqrt(b)#

#color(white)((a^n+b^n)/(a^(n-1)+b^(n-1))) = sqrt(ab)#

i.e. the geometric mean of #a# and #b#.

Aug 20, 2017

#n = 1/2#

Explanation:

Assuming that G.M stands for geometric mean, we have

#sqrt(a b) = (a^n + b^n)/(a^(n - 1) + b^(n - 1))# so squaring and simplifying we have

#ab = (a^(2n)+2 a^n b^n + b^(2n))/(a^(2n-2)+2a^(n-1)b^(n-1)+b^(2n-2))# or

#b a^(2n-1)+2a^nb^n+a b^(2n-1)=a^(2n)+2 a^n b^n + b^(2n)# or

#b/a a^(2n)+a/b b^(2n) = a^(2n)+b^(2n)# or

#(b-a)/a a^(2n)-(b-a)/b b^(2n) = 0#

Now assuming #a ne b#

#a^(2n)b-ab^(2n) = 0# or

#(a/b)^(2n)= a/b rArr 2n=1 rArr n = 1/2#