If alphaα and betaβ are the roots of the equation x^2 - x +1 = 0x2x+1=0, then alpha^2009 + beta^2009α2009+β2009 is?

A) -2
B) -1
C) 1
D) 2

1 Answer
Aug 18, 2017

C) 1

Explanation:

Note that:

x^3+1 = (x+1)(x^2-x+1)x3+1=(x+1)(x2x+1)

So since alphaα is a root of x^2-x+1 = 0x2x+1=0 we have:

alpha^3+1 = (alpha+1)(alpha^2-alpha+1) = (alpha+1)(0) = 0α3+1=(α+1)(α2α+1)=(α+1)(0)=0

So:

alpha^3 = -1α3=1

Similarly:

beta^3 = -1β3=1

Also:

x^2-x+1 = (x-alpha)(x-beta) = x^2-(alpha+beta)x+alphabetax2x+1=(xα)(xβ)=x2(α+β)x+αβ

So:

{ (alpha+beta = 1), (alphabeta=1) :}

Note that:

alpha^2 + beta^2 = (alpha+beta)^2-2alphabeta = 1-2 = -1

So:

alpha^2009+beta^2009 = alpha^(3*669+2)+beta^(3*669+2)

color(white)(alpha^2009+beta^2009) = (alpha^3)^669*alpha^2+(beta^3)^669*beta^2

color(white)(alpha^2009+beta^2009) = (-1)^669*alpha^2+(-1)^669*beta^2

color(white)(alpha^2009+beta^2009) = (-1)^669*(alpha^2+beta^2)

color(white)(alpha^2009+beta^2009) = (-1)(-1)

color(white)(alpha^2009+beta^2009) = 1