If (below) is f'(x) then what is f(x)? This is for both equations.

sqrt(-(x+4)^2+1)(x+4)2+1
-sqrt(-(x+1)^2+4)(x+1)2+4

1 Answer
Dec 29, 2016

1/2(sin^(-1)(x+4)+(x+4)sqrt(1-(x+4)^2))12(sin1(x+4)+(x+4)1(x+4)2) + C

Explanation:

y'=sqrt(1-(x+4)^2)>=0.

Upon substitution x+4=sin theta,

y'=(dy)/(dx)=sqrt(1-(x+4)^2)=|cos theta|.

So, dy = |cos theta| dx

= |cos theta|(dx)/(d theta) d theta

=|cos theta|cos theta d theta=cos^2theta d theta, as y'>=0..

Upon integration,

y = int cos^2theta d theta

=1/2int (1+cos (2theta)) d theta

=1/2(theta +1/2sin (2theta))+C

=1/2(sin^(-1)(x+4)+sin theta cos theta)+C

=1/2(sin^(-1)(x+4)+(x+4)sqrt(1-(x+4)^2)) + C

I have paved the way towards the similar answer, for the other

function.