If f(x)= (5x -1)^3-2 f(x)=(5x1)32 and g(x) = e^x g(x)=ex, what is f'(g(x)) ?

2 Answers
Apr 13, 2018

15e^x(5e^x-1)^2

Explanation:

First, let's find f(g(x))

(5(e^x)-1)^3-2

Now we take the derivative of this:

Power rule

f'(g(x)) = 3(5e^x-1)^2

We need to apply the power rule and take the derivative of what's inside the parentheses

(5e^x-1)' = 5e^x

So our final answer is f'(g(x)) = 3(5e^x-1)^2 xx 5e^x or 15e^x(5e^x-1)^2

Apr 13, 2018

=>f'(g(x)) = 15(5e^x - 1)^2

Explanation:

f(x) = (5x - 1)^3-2

f(g(x)) = (5e^x - 1)^3 - 2

f'(g(x)) = d/(dx)[(5e^x-1)^3-2]

=>f'(g(x)) = d/(dx)(5e^x-1)^3 -d/(dx)(2)

=>f'(g(x)) = 15e^x(5e^x-1)^2

Hence, the solution is:

=>f'(g(x)) = 15e^x(5e^x - 1)^2