If f(x) =-e^(-3x-7) f(x)=e3x7 and g(x) = lnx^2 g(x)=lnx2, what is f'(g(x)) ?

1 Answer
Jul 28, 2017

If f(x) =-e^(-3x-7) and g(x) = lnx^2 , what is f'(g(x)) ?

Given

f(x) =-e^(-3x-7)

Differentiating w . r to x we gat

f'(x) =-e^(-3x-7)xx(d/(dx) (-3x-7))

=>f'(x) =3e^(-3x-7)

Inserting x=g(x) we have

f'(g(x)) =3e^(-3g(x)-7)

=>f'(g(x)) =3e^-7xxe^(-3g(x))

=>f'(g(x)) =3e^-7xxe^(-3 lnx^2)

=>f'(g(x)) =3e^-7xxe^( lnx^(2*(-3))

=>f'(g(x)) =3e^-7xxe^( lnx^(-6))

=>f'(g(x)) =3e^-7xxx^(-6)