If f(x) =-e^(-x) and g(x) = tan^2x^2 , what is f'(g(x)) ?

1 Answer

f' (g(x))=4x*e^(-tan^2 x^2)*(tan^3 x^2+tan x^2)

Explanation:

given f(x)=-e^(-x) and g(x)=tan^2 x^2

f(g(x))=-e^(-g(x))

f(g(x))=-e^(-tan^2 x^2)

f' (g(x))=(-1)*d/dx(e^(-tan^2 x^2))

f' (g(x))=(-1)*(e^(-tan^2 x^2))*d/dx(-tan^2 x^2)

f' (g(x))=(-1)*(e^(-tan^2 x^2))*-d/dx(tan^2 x^2)

f' (g(x))=(-1)*(e^(-tan^2 x^2))(-2(tan x^2)^(2-1))d/dx(tan x^2)

f' (g(x))=(-1)*(e^(-tan^2 x^2))(-2(tan x^2)^(2-1))(sec^2 x^2)d/dx(x^2)

f' (g(x))=(-1)*(e^(-tan^2 x^2))(-2(tan x^2)^(2-1))(sec^2 x^2)(2x)

Simplify at this point

f' (g(x))=(4x)*(e^(-tan^2 x^2))(tan x^2)(sec^2 x^2)

f' (g(x))=(4x)*(e^(-tan^2 x^2))(tan x^2)(tan^2 x^2+1)

f' (g(x))=(4x)*(e^(-tan^2 x^2))(tan^3 x^2+tan x^2)

God bless....I hope the explanation is useful.