If f(x)= sqrt(x-2 f(x)=√x−2 and g(x) = 1/x g(x)=1x, what is f'(g(x)) ?
1 Answer
Jul 10, 2016
Explanation:
Before differentiating we require to establish f(g(x))
Substitute x
=1/x"into f(x)"
rArrf(g(x))=f(1/x)=sqrt(1/x-2) now differentiate using the
color(blue)"chain rule combined with power rule"
color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(f(g(x)))=f'(g(x))g'(x))color(white)(a/a)|)))........ (A) Express
sqrt(1/x-2)" as " (x^-1-2)^(1/2)
"--------------------------------------------------"
f(g(x))=(x^-1-2)^(1/2)rArrf'(g(x))=1/2(x^-1-2)^(-1/2) and
g(x)=x^-1-2rArrg'(x)=-1x^(-2)=-x^(-2)
"--------------------------------------------------------"
Substitute these values into (A)
rArrf'(g(x))=1/2(x^-1-2)^(-1/2).(-x^-2) Expressing the answer with positive indices
rArrf'(g(x))=-1/(2x^2sqrt(1/x-2)