If f(x)= sqrt(x-2 f(x)=x2 and g(x) = 1/x g(x)=1x, what is f'(g(x)) ?

1 Answer
Jul 10, 2016

-1/(2x^2sqrt(1/x-2)

Explanation:

Before differentiating we require to establish f(g(x))

Substitute x =1/x"into f(x)"

rArrf(g(x))=f(1/x)=sqrt(1/x-2)

now differentiate using the color(blue)"chain rule combined with power rule"

color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(f(g(x)))=f'(g(x))g'(x))color(white)(a/a)|)))........ (A)

Express sqrt(1/x-2)" as " (x^-1-2)^(1/2)
"--------------------------------------------------"
f(g(x))=(x^-1-2)^(1/2)rArrf'(g(x))=1/2(x^-1-2)^(-1/2)

and g(x)=x^-1-2rArrg'(x)=-1x^(-2)=-x^(-2)
"--------------------------------------------------------"
Substitute these values into (A)

rArrf'(g(x))=1/2(x^-1-2)^(-1/2).(-x^-2)

Expressing the answer with positive indices

rArrf'(g(x))=-1/(2x^2sqrt(1/x-2)