If f(x) =xe^x and g(x) = sinx-x, what is f'(g(x)) ?

1 Answer
Jul 11, 2018

f'(g(x))=(cosx-1)e^(sinx-x)(sinx-x+1)

Explanation:

f(x)=xe^x
g(x)=sinx-x

f(g(x)) means that we sub sinx-x into any x in f(x)
f(g(x))=(sinx-x)e^(sinx-x)

f'(g(x))=(sinx-x)times(cosx-1)e^(sinx-x)+e^(sinx-x)times (cosx-1)

f'(g(x))=(sinx-x)(cosx-1)e^(sinx-x)+(cosx-1)e^(sinx-x)

f'(g(x))=(cosx-1)e^(sinx-x)(sinx-x+1)