How do you do this calculus 1 question?

Find the linearization L(x) of the function g(x)=xf(x^2) at x=2 given the following information.
f(2)=1 f′(2)=10 f(4)=5 f′(4)=−3

1 Answer
Nov 11, 2016

L(x)=10-19(x-2)L(x)=1019(x2)

Explanation:

To find L(x) for a function g(x)g(x) at a point aa you use this equation:
L(x)=g(a)+g'(a)(x-a)
The point we want is a=2 so we need to find g(2) and g'(2).
g(2)=2*f(2^2)
g(2)=2*f(4)
because f(4)=5,
g(2)=2*5
g(2)=10

To fill in the last number, we must find g'(x)
The product rule says if h(x)=g(x)\cdotf(x) then h'(x)=g'(x)\cdotf(x)+f'(x)\cdotg(x), so:
g'(x)=x\cdotd/dx[f(x^2)]+1\cdotf(x^2)
The chain rule says the derivative of a function, f(u), is: f'(u)*(du)/dx, where u can be some other function. Using this, we can remove the d/dx in the above problem:
g'(x)=x*f'(x^2)*d/dxx^2+f(x^2)
Using the power rule and then simplifying:
g'(x)=x*f'(x^2)*2x+f(x^2)
g'(x)=2x^2*f'(x^2)+f(x^2)

Next, plug in x=2:
g'(2)=2(2)^2*f'(2^2)+f(2^2)
g'(2)=8*f'(4)+f(4)
f'(4)=-3 and f(4)=5, so:
g'(2)=8*(-3)+5
g'(2)=-19

Next add everything back into the original equation:
L(x)=10-19(x-2)