If log_12 27 = a, then what is log_6 16?

1 Answer
Nov 27, 2016

A good problem

Given

a=log_12 27=log_(12)3^3=3log_(12)3
=>a=3/log_3 12=3/log_3(3xx2^2)

=>a=3/(log_3 3+2log_3 2

=>a=3/(1+2log_3 2)

=>(1+2log_3 2)=3/a

=>log_3 2=1/2(3/a-1)=(3-a)/(2a)

=>log_2 3=(2a)/(3-a)

Now log_6 16=log_6 2^4=4log_6 2=4/log_2 6

=4/log_2 (2xx3)=4/(log_2 2+log_2 3

=4/(1+log_2 3)=4/(1+(2a)/(3-a)

=(4(3-a))/(3-a+2a)=(12-4a)/(3+a)