If s(x)=x^2+1 and t(x)=x-3, does s(t(x))=t(s(x))?

2 Answers
Mar 1, 2017

No

Explanation:

Given
color(white)("XXX")color(red)(s(x))=color(red)(x^2+1)
and
color(white)("XXX")color(blue)(t(x))=color(blue)(x-3)

Then
color(white)("XXX")s(color(blue)(t(x)))=(color(blue)(t(x)))^2+1
color(white)("XXXXXXX")=(color(blue)(x-3))^2+1
color(white)("XXXXXXX")=x^2-6x+8
and
color(white)("XXX")t(color(red)(s(x)))=color(red)(x^2+1)-3
color(white)("XXXXXXX")=x^2-2

Clearly s(t(x))!=t(s(x))

Mar 1, 2017

No.
s(t(x)) = x^2-6x+10, while t(s(x)) = x^2-2

Explanation:

s(t(x)) =(x-3)^2+1 (plug t(x) in the place of x in s(x)
s(t(x)) = x^2-6x+9+1 (square (x-3))
s(t(x)) = x^2-6x+10 (simplify)

t(s(x)) = (x^2+1)-3 (plug in s(x) in the place of x in t(x))
t(s(x)) = x^2-2 (simplify)