If sin(x) = 2/3, what is tan(2x)?

1 Answer
May 24, 2016

4sqrt545

Explanation:

sin x = 2/3sinx=23 , find cos x.
cos^2 x = 1 - sin^2 x = 1 - 4/9 = 5/9cos2x=1sin2x=149=59
cos x = +- sqrt5/3cosx=±53
Since x is in Quadrant I, then, cos x is positive
cos x = sqrt5/3cosx=53
tan x = sin x/(cos x) = (2/3)(3/sqrt5) = 2/sqrt5 = (2sqrt5)/5tanx=sinxcosx=(23)(35)=25=255
Apply the trig identity:
tan 2x = (2tan x)/(1 - tan^2 x) tan2x=2tanx1tan2x
tan 2x = ((4sqrt5)/5)/(1 - 4/5) = (4sqrt5/5)(5/1) = 4sqrt5tan2x=455145=(455)(51)=45