If sinx+sin^2x=1 and acos^12x+bcos^8x+c cos^6x-1=0, then what is the value of a^2+b^2+c^2?

1 Answer
Apr 8, 2017

Question

If sinx+sin^2x=1 and acos^12x+bcos^8x+c cos^6x-1=0, then what is the value of a^2+b^2+c^2?

Given

sinx+sin^2x=1

=>sin^2x+sinx-1=0

=>sinx=(-1pmsqrt(1^2-4*1*(-1)))/2

=>sinx=(-1pmsqrt5)/2

But we know -1<=sinx<=1

Hence acceptable value of

sinx=(-1+sqrt5)/2=1/2(sqrt5-1)

Now
color(red)(sinx=1/2(sqrt5-1))

color(red)(sin^2x=1/4(5+1-2sqrt5)=1/2(3-sqrt5)

color(blue)(sin^3x=sinx xx sin^2x=1/2(sqrt5-1)xx1/2(3-sqrt5))

=>color(blue)(sin^3x=(-2+sqrt5))

color(magenta)(sin^4x=(1/2(3-sqrt5))^2=(7/2-3/2sqrt5)

color(green)(sin^6x=(-2+sqrt5)^2=(9-4sqrt5))

Again we have

sinx+sin^2x=1

=>sinx=1-sin^2x=cos^2x

Now putting cos^2x=sinx in the LHS of the given expression

asin^6x+bsin^4x+c sin^3x-1=0

Now putting the values of sin^6x " "sin^4x and sin^3x

a(9-4sqrt5)+b(7/2-3/2sqrt5)+c (-2+sqrt5)-1=0

Now if we take rationalizing factors

a=(9+4sqrt5)

b=(7/2+3/2sqrt5)

and

c= (-2-sqrt5)

then above equation is satisfied.

So inserting these values we can get a possible value of

a^2+b^2+c^2

=(9+4sqrt5)^2+(7/2+3/2sqrt5)^2+ (-2-sqrt5)^2

=(161+72sqrt5)+1/4(94+42sqrt5)+ (9+4sqrt5)

=(161+72sqrt5)+(23.5+10.5sqrt5)+ (9+4sqrt5)

=(193.5+86.5sqrt5)

In addition here is a scratchpad note of respected Cesareo R regarding this problem .

https://socratic.org/scratchpad/87db6c91b6866e1f5e3a