If tan A + sec A = 4, what is CosA?

2 Answers
Mar 23, 2018

Given tan A + sec A = 4

(secA + tan A) = 4.....[1]

So

(secA + tan A)(secA-tanA) = 4(secA-tanA)

=>(sec^2A-tan^2A) = 4(secA-tanA)

=>1 = 4(secA-tanA)

=> secA-tanA=1/4.......[2]

Adding [1] and [2] we get

2secA=4+1/4

=>secA=17/8

=>cosA=8/17

Mar 23, 2018

cosA=8/17

Explanation:

Here,

secA+tanA=4.....to(1)

We know that,

color(red)(sec^2A-tan^2A=1

(secA+tanA)(secA-tanA)=1

=>(4)(secA-tanA)=1.....toFrom(1)

:.secA-tanA=1/4.....to(2)

Adding (1) and (2),

secA+canceltanA=4

(secA-canceltanA=1/4)/

2secA=4+1/4=17/4

=>secA=17/8

=>cosA=8/17