If tanx= -1/3, cos>0, then how do you find sin2x?

1 Answer
Aug 1, 2016

sin(2x)=0.6

Explanation:

Any trigonometric function of some angle can be easily expressed in terms of a tangent of half of this angle.

We can express sin(2x) in terms of tan(x) as follows:
sin(2x)=2sin(x)cos(x)=2sin(x)cos(x)cos2(x)=2tan(x)cos2(x)

In its turn,
1cos2(x)=sin2(x)+cos2(x)cos2(x)=1+sin2(x)cos2(x)=1+tan2(x)

Therefore,
sin(2x)=2tan(x)1+tan2(x)

Using this and given value tan(x)=13, we conclude
sin(2x)=2131+19=610=0.6