If vecuu and vecvv are vectors, then how do you proove that ∣vecu+vecv∣^2-∣vecu-vecv∣^2=4vecuvecvu+v2uv2=4uv ?

If vecuu and vecvv are vectors, then how do you proove that ∣vecu+vecv∣^2-∣vecu-vecv∣^2=4vecuvecvu+v2uv2=4uv ?

1 Answer
Jun 18, 2018

Please see a Proof in the Explanation.

Explanation:

Recall that, foe any vector vecx, |vecx|^2=vecx*vecxx,x2=xx.

Therefore, for vecu and vecvuandv, we have,

|vecu+vecv|^2=(vecu+vecv)*(vecu+vecv)u+v2=(u+v)(u+v).

Since dot product is distributive over vector addition, we have,

|vecu+vecv|^2=vecu*(vecu+vecv)+vecv*(vecu+vecv)u+v2=u(u+v)+v(u+v),

=vecu*vecu+vecu*vecv+vecv*vecu+vecv*vecv=uu+uv+vu+vv.

But, vecu*vecv=vecv*vecuuv=vu.

:.|vecu+vecv|^2=|vecu|^2+vecu*vecv+vecu*vecv+|vecv|^2.

rArr |vecu+vecv|^2=|vecu|^2+2vecu*vecv+|vecv|^2...(star^1).

Similarly, |vecu-vecv|^2=|vecu|^2-2vecu*vecv+|vecv|^2...(star^2).

Subtracting (star^2) from (star^1), we immediately get,

|vecu+vecv|^2-|vecu-vecv|^2=4vecu*vecv.

Enjoy Maths.!