If #vecu# and #vecv# are vectors, then how do you proove that #∣vecu+vecv∣^2-∣vecu-vecv∣^2=4vecuvecv# ?

If #vecu# and #vecv# are vectors, then how do you proove that #∣vecu+vecv∣^2-∣vecu-vecv∣^2=4vecuvecv# ?

1 Answer
Jun 18, 2018

Please see a Proof in the Explanation.

Explanation:

Recall that, foe any vector #vecx, |vecx|^2=vecx*vecx#.

Therefore, for #vecu and vecv#, we have,

#|vecu+vecv|^2=(vecu+vecv)*(vecu+vecv)#.

Since dot product is distributive over vector addition, we have,

#|vecu+vecv|^2=vecu*(vecu+vecv)+vecv*(vecu+vecv)#,

#=vecu*vecu+vecu*vecv+vecv*vecu+vecv*vecv#.

But, #vecu*vecv=vecv*vecu#.

#:.|vecu+vecv|^2=|vecu|^2+vecu*vecv+vecu*vecv+|vecv|^2#.

# rArr |vecu+vecv|^2=|vecu|^2+2vecu*vecv+|vecv|^2...(star^1)#.

Similarly, #|vecu-vecv|^2=|vecu|^2-2vecu*vecv+|vecv|^2...(star^2)#.

Subtracting #(star^2)# from #(star^1)#, we immediately get,

#|vecu+vecv|^2-|vecu-vecv|^2=4vecu*vecv#.

Enjoy Maths.!