Given that, #x+iy=2/(3+costheta+isintheta)#.
#:. (x+iy)(3+costheta+isintheta)=2, i.e.,#
#(3+costheta)x+ixsintheta+(3+costheta)iy+i^2ysintheta=2, or,#,
#(3+costheta)x-ysintheta+i{xsintheta+(3+costheta)y}=2+0i#.
Comparing the Real and Imaginary Parts, we have,
#(3+costheta)x-ysintheta=2, and, xsintheta+(3+costheta)y=0#.
Solving these eqns. for #(3+costheta) and sintheta,# we get,
#3+costheta=(2x)/(x^2+y^2) and sintheta=-(2y)/(x^2+y^2), or, #
#costheta=(2x)/(x^2+y^2)-3 and sintheta=-(2y)/(x^2+y^2)#.
But, #cos^2theta+sin^2theta=1,#
#rArr {(2x)/(x^2+y^2)-3}^2+{-(2y)/(x^2+y^2)^2}=1#.
#rArr (4x^2)/(x^2+y^2)^2-(12x)/(x^2+y^2)+9+(4y^2)/(x^2+y^2)^2=1#.
#rArr (4x^2+4y^2)/(x^2+y^2)^2=(12x)/(x^2+y^2)-8, i.e., #
#(4(x^2+y^2))/(x^2+y^2)^2=4{(3x)/(x^2+y^2)-2}, or, #
#1/(x^2+y^2)=(3x)/(x^2+y^2)-2#.
#rArr 2=(3x-1)/(x^2+y^2)," giving,"#
#2(x^2+y^2)=3x-1,# as desired!
Q.E.D.
Enjoy Maths.!