If #(x+sqrt(x^2+1))(y+sqrt(y^2+1))=1# what is #x+y#?
2 Answers
Sep 3, 2016
Explanation:
Let
Then:
#(x+sqrt(x^2+1))(y+sqrt(y^2+1)) = (sqrt(x^2+1)+x)(sqrt(x^2+1)-x)#
#color(white)((x+sqrt(x^2+1))(y+sqrt(y^2+1))) = (x^2+1)-x^2#
#color(white)((x+sqrt(x^2+1))(y+sqrt(y^2+1))) = 1#
So
To see that this is the only possible value of
So if
Sep 3, 2016
Explanation:
If
Solving
we obtain
then