If (x+sqrt(x^2+1))(y+sqrt(y^2+1))=1 what is x+y?

2 Answers
Sep 3, 2016

x+y = 0

Explanation:

Let y = -x

Then:

(x+sqrt(x^2+1))(y+sqrt(y^2+1)) = (sqrt(x^2+1)+x)(sqrt(x^2+1)-x)

color(white)((x+sqrt(x^2+1))(y+sqrt(y^2+1))) = (x^2+1)-x^2

color(white)((x+sqrt(x^2+1))(y+sqrt(y^2+1))) = 1

So x+y = 0 always results in (x+sqrt(x^2+1))(y+sqrt(y^2+1)) = 1

To see that this is the only possible value of x+y, note that the function f(x) = x + sqrt(x^2+1) is strictly monotonic increasing.

So if x_1+sqrt(x_1^2+1) = x_2+sqrt(x_2^2+1) then x_1 = x_2

Sep 3, 2016

x+y=0

Explanation:

If x+sqrt(x^2+1) = delta then y+sqrt(y^2+1) = 1/delta

Solving

(x-delta)^2=x^2+1 and

(y-1/delta)^2=y^2+1

we obtain

x = (delta^2-1)/(2delta) and
y =- (delta^2-1)/(2delta)

then

x+y=0