If #y=e^(msin^-1x)#, then show that #(1-x^2)y_2-xy_1=m^2y#?
2 Answers
To proceed we will need some standard Calculus results:
# d/dx e^(ax) = ae^(ax) #
# d/dx sin^(-1)x = 1/sqrt(1-x^2) #
Now we have:
# y = e^(msin^(-1)x) #
If we apply the chain rule then we get:
# y' = m \ e^(msin^(-1)x) * 1/sqrt(1-x^2) #
# \ \ \ \ = m \ e^(msin^(-1)x)/sqrt(1-x^2) #
And differentiating again and applying the quotient rule, along with the chain rule, we get:
# y'' = { (sqrt(1-x^2))(d/dxme^(msin^(-1)x)) - (me^(msin^(-1)x))(d/dxsqrt(1-x^2)) }/ (sqrt(1-x^2))^2 #
# \ \ \ \ = { (sqrt(1-x^2))(m^2e^(msin^(-1)x)/sqrt(1-x^2)) - (me^(msin^(-1)x))(1/2(1-x^2)^(-1/2)*(-2x)) }/ (sqrt(1-x^2))^2 #
# \ \ \ \ = { m^2e^(msin^(-1)x) + (mxe^(msin^(-1)x))/(sqrt(1-x^2)) }/ (1-x^2) #
# \ \ \ \ = { m^2y + xy' }/ (1-x^2) #
# :. (1-x^2)y'' = m^2y + xy' #
# :. (1-x^2)y'' -xy' = m^2y # QED
See the Explanation.
Explanation:
Using the Chain Rule, we get,
Squaring,
Rediff,ing w.r.t.
Dividing by
Hence, the Proof.
Enjoy Maths.!