If #y=tan^(-1)(x/y)# then #dy/dx# will be? (a) #y/x# (b) #-y/x# (c) #x/y# (d) #-x/y# (e) #-xy#

2 Answers
Jul 27, 2017

#(dy)/(dx)=y/(y^2+x^2+x)#

Explanation:

As #y=tan^(-1)(x/y)#, we have #tany=x/y#

and differentiating implicitly

#sec^2y(dy)/(dx)=-x/y^2(dy)/(dx)+1/y#

or #(dy)/(dx)(sec^2y+x/y^2)=1/y#

Now as #sec^2y=1+tan^2y=1+x^2/y^2#

#(dy)/(dx)(1+x^2/y^2+x/y^2)=1/y#

or #(dy)/(dx)((y^2+x^2+x)/y^2)=1/y#

or #(dy)/(dx)=y/(y^2+x^2+x)#

Jul 28, 2017

# dy/dx=y/(y^2+x^2+x),#

Explanation:

#y=tan^-1(x/y) rArr tany=x/y, or, x=ytany.#

#:. d/dy{x}=d/dy{ytany}.#

#:. dx/dy=yd/dy(tany)+tany*d/dy(y),........"[Product Rule]"#

#=ysec^2y+tany=y(1+tan^2y)+tany.#

Subst.ing, #tany=x/y,# in this, we have,

# dx/dy=y(1+x^2/y^2)+x/y=y+x^2/y+x/y=(y^2+x^2+x)/y.#

# rArr dy/dx=y/(y^2+x^2+x),# as Respected Shwetank Mauria has

already derived.

No option can be selected for the Answer.