If y'(x)+y(x)g'(x)=g(x)g'(x)" ; y(0)=0 ; g(0)=g(2)=0 " where " x in RR then y(2)=?

1 Answer
Dec 27, 2016

y(2)=-2

Explanation:

This equation is of type

y'+P(x)y=Q(x)

Making u(x)=int_(x_0)^xP(xi)d xi we have

d/(dx)(e^(u(x)) y)=e^(u(x))(y'+P(x) y) = e^(u(x)) Q(x) so

y = e^(-u(x))int_(x_0)^x e^(u(xi))Q(xi)d xi

Here P(x)= g' so u(x) = g(x) and

y=e^(-g(x))int_(x_0)^x g(xi) d/(d xi)(e^(g(xi)))d xi =e^(-g(x))(( g(x)-1)e^(g(x))+C) or

y = g(x)-1+Ce^(-g(x))

Now, using the initial conditions, y(0)=g(0)= 0 we have

0=-1+C so C = 1 and

y = g(x)-1+e^(-g(x)) and also

y(2)=g(2)-1+e^(-g(2)) = 0