If z = x^2 + 2y^2 , x = r cos θ , y = r sin θ , find the partial derivative (∂z/∂θ)_y ?

1 Answer
Dec 16, 2017

The answer is #=-r^2sin2theta#

Explanation:

Reminder

#sin2theta=2sinthetacostheta#

We are given

#z=x^2+2y^2#

#x=rcostheta#

#y=rsintheta#

#(delz)/(deltheta)=(delz)/(delx).(delx)/(deltheta)+(delz)/(dely).(dely)/(deltheta)#

#(delz)/(delx)=2x#

#(delz)/(dely)=4y#

#(delx)/(deltheta)=-rsintheta#

#(dely)/(deltheta)=rcostheta#

#(delz)/(deltheta)=-2xrsintheta+4yrcostheta#

#=-2rsinthetarcostheta+4rsinthetarcostheta#

#=2r^2sinthetacostheta#

If #y# is constant then

#(delz)/(dely)=0#

Therefore,

#((delz)/(deltheta))_y=-2r^2sinthetacostheta=-r^2sin2theta#