If z = x^2 + 2y^2 , x = r cos θ , y = r sin θ , find the partial derivative (∂z/∂θ)_y ?

1 Answer
Dec 16, 2017

The answer is =-r^2sin2theta

Explanation:

Reminder

sin2theta=2sinthetacostheta

We are given

z=x^2+2y^2

x=rcostheta

y=rsintheta

(delz)/(deltheta)=(delz)/(delx).(delx)/(deltheta)+(delz)/(dely).(dely)/(deltheta)

(delz)/(delx)=2x

(delz)/(dely)=4y

(delx)/(deltheta)=-rsintheta

(dely)/(deltheta)=rcostheta

(delz)/(deltheta)=-2xrsintheta+4yrcostheta

=-2rsinthetarcostheta+4rsinthetarcostheta

=2r^2sinthetacostheta

If y is constant then

(delz)/(dely)=0

Therefore,

((delz)/(deltheta))_y=-2r^2sinthetacostheta=-r^2sin2theta