Reminder
sin2theta=2sinthetacosthetasin2θ=2sinθcosθ
We are given
z=x^2+2y^2z=x2+2y2
x=rcosthetax=rcosθ
y=rsinthetay=rsinθ
(delz)/(deltheta)=(delz)/(delx).(delx)/(deltheta)+(delz)/(dely).(dely)/(deltheta)∂z∂θ=∂z∂x.∂x∂θ+∂z∂y.∂y∂θ
(delz)/(delx)=2x∂z∂x=2x
(delz)/(dely)=4y∂z∂y=4y
(delx)/(deltheta)=-rsintheta∂x∂θ=−rsinθ
(dely)/(deltheta)=rcostheta∂y∂θ=rcosθ
(delz)/(deltheta)=-2xrsintheta+4yrcostheta∂z∂θ=−2xrsinθ+4yrcosθ
=-2rsinthetarcostheta+4rsinthetarcostheta=−2rsinθrcosθ+4rsinθrcosθ
=2r^2sinthetacostheta=2r2sinθcosθ
If yy is constant then
(delz)/(dely)=0∂z∂y=0
Therefore,
((delz)/(deltheta))_y=-2r^2sinthetacostheta=-r^2sin2theta(∂z∂θ)y=−2r2sinθcosθ=−r2sin2θ