If z = x^2 + 2y^2 , x = r cos θ , y = r sin θ , find the partial derivative (∂z/∂θ)_y ?

1 Answer
Dec 16, 2017

The answer is =-r^2sin2theta=r2sin2θ

Explanation:

Reminder

sin2theta=2sinthetacosthetasin2θ=2sinθcosθ

We are given

z=x^2+2y^2z=x2+2y2

x=rcosthetax=rcosθ

y=rsinthetay=rsinθ

(delz)/(deltheta)=(delz)/(delx).(delx)/(deltheta)+(delz)/(dely).(dely)/(deltheta)zθ=zx.xθ+zy.yθ

(delz)/(delx)=2xzx=2x

(delz)/(dely)=4yzy=4y

(delx)/(deltheta)=-rsinthetaxθ=rsinθ

(dely)/(deltheta)=rcosthetayθ=rcosθ

(delz)/(deltheta)=-2xrsintheta+4yrcosthetazθ=2xrsinθ+4yrcosθ

=-2rsinthetarcostheta+4rsinthetarcostheta=2rsinθrcosθ+4rsinθrcosθ

=2r^2sinthetacostheta=2r2sinθcosθ

If yy is constant then

(delz)/(dely)=0zy=0

Therefore,

((delz)/(deltheta))_y=-2r^2sinthetacostheta=-r^2sin2theta(zθ)y=2r2sinθcosθ=r2sin2θ