int_0^(pi/2) dx/(5+4cosx)π20dx5+4cosx?

1 Answer
Jun 13, 2017

2/3arc tan(1/3).23arctan(13).

Explanation:

Let, I=int_0^(pi/2) dx/(5+4cosx).I=π20dx5+4cosx.

The Proper Substn. for this type of Integrals is, tan(x/2)=t,tan(x2)=t, so

that,

1/2sec^2(x/2)dx=dt, or, dx=(2dt)/sec^2(x/2)=(2dt)/(1+tan^2(x/2)),12sec2(x2)dx=dt,or,dx=2dtsec2(x2)=2dt1+tan2(x2),

i.e., dx=(2dt)/(1+t^2).dx=2dt1+t2.

When, x=0, t=tan0=0, &, x=pi/2, t=tan(pi/4)=1.x=0,t=tan0=0,&,x=π2,t=tan(π4)=1.

Further, 5+4cosx=5+4{(1-tan^2(x/2))/(1+tan^2(x/2))}=5+4((1-t^2)/(1+t^2))5+4cosx=5+4{1tan2(x2)1+tan2(x2)}=5+4(1t21+t2)

=(9+t^2)/(1+t^2).=9+t21+t2.

:. I=int_0^1 {(2dt)/(1+t^2)}/{(9+t^2)/(1+t^2)}=2int_0^1dt/(t^2+3^2),

=2*1/3[arc tan (t/3)]_0^1,

=2/3[arc tan(1/3)-0],

:. I=2/3arc tan(1/3).

Enjoy Maths.!