#int_0^(pi/2) dx/(5+4cosx)#?

1 Answer
Jun 13, 2017

# 2/3arc tan(1/3).#

Explanation:

Let, #I=int_0^(pi/2) dx/(5+4cosx).#

The Proper Substn. for this type of Integrals is, #tan(x/2)=t,# so

that,

#1/2sec^2(x/2)dx=dt, or, dx=(2dt)/sec^2(x/2)=(2dt)/(1+tan^2(x/2)),#

i.e., #dx=(2dt)/(1+t^2).#

When, #x=0, t=tan0=0, &, x=pi/2, t=tan(pi/4)=1.#

Further, #5+4cosx=5+4{(1-tan^2(x/2))/(1+tan^2(x/2))}=5+4((1-t^2)/(1+t^2))#

#=(9+t^2)/(1+t^2).#

# :. I=int_0^1 {(2dt)/(1+t^2)}/{(9+t^2)/(1+t^2)}=2int_0^1dt/(t^2+3^2),#

#=2*1/3[arc tan (t/3)]_0^1,#

#=2/3[arc tan(1/3)-0],#

# :. I=2/3arc tan(1/3).#

Enjoy Maths.!